Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 862
Filtrar
1.
Angew Chem Int Ed Engl ; : e202404983, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38563622

RESUMO

Syngas conversion serves as a gas-to-liquid technology to produce liquid fuels and valuable chemicals from coal, natural gas, or biomass. During syngas conversion, sintering is known to deactivate the catalyst owing to the loss of active surface area. However, the growth of nanoparticles might induce the formation of new active sites such as grain boundaries (GBs) which perform differently from the original nanoparticles. Herein, we reported a unique Cu-based catalyst, Cu nanoparticles with in-situ generated GBs confined in zeolite Y (denoted as activated Cu/Y), which exhibited a high selectivity for C5+ hydrocarbons (65.3 C%) during syngas conversion. Such high selectivity for long-chain products distinguished activated Cu/Y from typical copper-based catalysts which mainly catalyze methanol synthesis. This unique performance was attributed to the GBs, while the zeolite assisted the stabilization through spatial confinement. Specifically, the GBs enabled H-assisted dissociation of CO and subsequent hydrogenation into CHx*. CHx* species not only serve as the initiator but also directly polymerize on Cu GBs, known as the carbide mechanism. Meanwhile, the synergy of GBs and their vicinal low-index facets led to the CO insertion where non-dissociative adsorbed CO on low-index facets migrated to GBs and inserted into the metal-alkyl bond for the chain growth.

2.
Angew Chem Int Ed Engl ; : e202404952, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38588012

RESUMO

The vast bulk of polystyrene (PS), a major type of plastic polymers, ends up in landfills, which takes up to thousands of years to decompose in nature. Chemical recycling promises to enable lower-energy pathways and minimal environmental impacts compared with traditional incineration and mechanical recycling. Herein, we demonstrated that methanol as a hydrogen supplier assisted the depolymerization of PS (denoted as PS-MAD) into alkylbenzenes over a heterogeneous catalyst composed of Ru nanoparticles on SiO2. PS-MAD achieved a high yield of liquid products which accounted for 93.2 wt% of virgin PS at 280 oC for 6 h with the production rate of 118.1 mmolcarbon gcatal.-1 h-1. The major components were valuable alkylbenzenes (monocyclic aromatics and diphenyl alkanes), the sum of which occupied 84.3 wt% of liquid products. According to mechanistic studies, methanol decomposition dominates the hydrogen supply during PS-MAD, thereby restraining PS aromatization which generates by-products of fused polycyclic arenes and polyphenylenes.

3.
Eur J Pharmacol ; 972: 176589, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38631503

RESUMO

We explored the vasorelaxant effects of ipragliflozin, a sodium-glucose cotransporter-2 inhibitor, on rabbit femoral arterial rings. Ipragliflozin relaxed phenylephrine-induced pre-contracted rings in a dose-dependent manner. Pre-treatment with the ATP-sensitive K+ channel inhibitor glibenclamide (10 µM), the inwardly rectifying K+ channel inhibitor Ba2+ (50 µM), or the Ca2+-sensitive K+ channel inhibitor paxilline (10 µM) did not influence the vasorelaxant effect. However, the voltage-dependent K+ (Kv) channel inhibitor 4-aminopyridine (3 mM) reduced the vasorelaxant effect. Specifically, the vasorelaxant response to ipragliflozin was significantly attenuated by pretreatment with the Kv7.X channel inhibitors linopirdine (10 µM) and XE991 (10 µM), the sarcoplasmic/endoplasmic reticulum Ca2+-ATPase (SERCA) pump inhibitors thapsigargin (1 µM) and cyclopiazonic acid (10 µM), and the cAMP/protein kinase A (PKA)-associated signaling pathway inhibitors SQ22536 (50 µM) and KT5720 (1 µM). Neither the cGMP/protein kinase G (PKG)-associated signaling pathway nor the endothelium was involved in ipragliflozin-induced vasorelaxation. We conclude that ipragliflozin induced vasorelaxation of rabbit femoral arteries by activating Kv channels (principally the Kv7.X channel), the SERCA pump, and the cAMP/PKA-associated signaling pathway independent of other K+ (ATP-sensitive K+, inwardly rectifying K+, and Ca2+-sensitive K+) channels, cGMP/PKG-associated signaling, and the endothelium.

4.
Nutrients ; 16(5)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38474792

RESUMO

Colostrum basic protein (CBP) is a trace protein extracted from bovine colostrum. Previous studies have shown that CBP can promote bone cell differentiation and increase bone density. However, the mechanism by which CBP promotes bone activity remains unclear. This study investigated the mechanism of the effect of CBP on bone growth in mice following dietary supplementation of CBP at doses that included 0.015%, 0.15%, 1.5%, and 5%. Compared with mice fed a normal diet, feeding 5% CBP significantly enhanced bone rigidity and improved the microstructure of bone trabeculae. Five-percent CBP intake triggered significant positive regulation of calcium metabolism in the direction of bone calcium accumulation. The expression levels of paracellular calcium transport proteins CLDN2 and CLDN12 were upregulated nearly 1.5-fold by 5% CBP. We conclude that CBP promotes calcium absorption in mice by upregulating the expression of the calcium-transporting paracellular proteins CLND2 and CLND12, thereby increasing bone density and promoting bone growth. Overall, CBP contributes to bone growth by affecting calcium metabolism.


Assuntos
Cálcio , Colostro , Gravidez , Feminino , Animais , Camundongos , Bovinos , Cálcio/metabolismo , Colostro/metabolismo , Cálcio da Dieta/metabolismo , Osso e Ossos/metabolismo , Desenvolvimento Ósseo , Densidade Óssea , Proteínas na Dieta/farmacologia
5.
J Ethnopharmacol ; 327: 118011, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38467320

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Rujifang (RJF) constitutes a traditional Chinese medicinal compound extensively employed in the management of triple-negative breast cancer (TNBC). However, information regarding its potential active ingredients, antitumor effects, safety, and mechanism of action remains unreported. AIM OF THE STUDY: To investigate the efficacy and safety of RJF in the context of TNBC. MATERIALS AND METHODS: We employed the ultra high-performance liquid chromatography-electrospray four-pole time-of-flight mass spectrometry technique (UPLC/Q-TOF-MS/MS) to scrutinize the chemical constituents of RJF. Subcutaneously transplanted tumor models were utilized to assess the impact of RJF on TNBC in vivo. Thirty female BLAB/c mice were randomly divided into five groups: the model group, cyclophosphamide group, and RJF high-dose, medium-dose, and low-dose groups. A total of 1 × 106 4T1 cells were subcutaneously injected into the right shoulder of mice, and they were administered treatments for a span of 28 days. We conducted evaluations on blood parameters, encompassing white blood cell count (WBC), red blood cell count (RBC), hemoglobin (HGB), platelet count (PLT), neutrophils, lymphocytes, and monocytes, as well as hepatorenal indicators including alkaline phosphatase (ALP), glutamate oxaloacetate transaminase (GOT), glutamate pyruvate transaminase (GPT), albumin, and creatinine (CRE) to gauge the safety of RJF. Ki67 and TUNEL were detected via immunohistochemistry and immunofluorescence, respectively. We prepared RJF drug-containing serum for TNBC cell lines and assessed the in vitro inhibitory effect of RJF on tumor cell growth through the CCK8 assay and cell cycle analysis. RT-PCR was employed to detect the mRNA expression of cyclin-dependent kinase and cyclin-dependent kinase inhibitors in tumor tissues, and Western blot was carried out to ascertain the expression of cyclin and pathway-related proteins. RESULTS: 100 compounds were identified in RJF, which consisted of 3 flavonoids, 24 glycosides, 18 alkaloids, 3 amino acids, 8 phenylpropanoids, 6 terpenes, 20 organic acids, and 18 other compounds. In animal experiments, both CTX and RJF exhibited substantial antitumor effects. RJF led to an increase in the number of neutrophils in peripheral blood, with no significant impact on other hematological indices. In contrast, CTX reduced red blood cell count, hemoglobin levels, and white blood cell count, while increasing platelet count. RJF exhibited no discernible influence on hepatorenal function, whereas Cyclophosphamide (CTX) decreased ALP, GOT, and GPT levels. Both CTX and RJF reduced the expression of Ki67 and heightened the occurrence of apoptosis in tumor tissue. RJF drug-containing serum hindered the viability of 4T1 and MD-MBA-231 cells in a time and concentration-dependent manner. In cell cycle experiments, RJF diminished the proportion of G2 phase cells and arrested the cell cycle at the S phase. RT-PCR analysis indicated that RJF down-regulated the mRNA expression of CDK2 and CDK4, while up-regulating that of P21 and P27 in tumor tissue. The trends in CDKs and CDKIs protein expression mirrored those of mRNA expression. Moreover, the PI3K/AKT pathway displayed downregulation in the tumor tissue of mice treated with RJF. CONCLUSION: RJF demonstrates effectiveness and safety in the context of TNBC. It exerts anti-tumor effects by arresting the cell cycle at the S phase through the PI3K-AKT pathway.


Assuntos
Transdução de Sinais , Neoplasias de Mama Triplo Negativas , Humanos , Feminino , Animais , Camundongos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Antígeno Ki-67/metabolismo , Espectrometria de Massas em Tandem , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Quinases Ciclina-Dependentes/metabolismo , Quinases Ciclina-Dependentes/farmacologia , Quinases Ciclina-Dependentes/uso terapêutico , Ciclofosfamida/farmacologia , Hemoglobinas/farmacologia , Hemoglobinas/uso terapêutico , Transaminases , Glutamatos/farmacologia , Glutamatos/uso terapêutico , RNA Mensageiro
6.
Anim Sci J ; 95(1): e13944, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38549501

RESUMO

The objective of this study was to investigate the effects of two different organic selenium (Se) supplements, selenomethionine (Se-Met) and selenohomolanthionine (Se-Hlan), on the serum biochemical parameters and Se status of dairy cows. Different dietary Se supplementation treatments were set as follows: a control group (CON, adding sodium selenite at 0.3 mg Se/kg dry matter [DM]), 0.3 and 0.5 Se-Met (adding Se-Met at 0.3 and 0.5 mg Se/kg DM, respectively), as well as 0.3 and 0.5 Se-Hlan (adding Se-Hlan at 0.3 and 0.5 mg Se/kg DM, respectively). The experiment lasted 8 weeks. The serum measurements showed that both organic Se treatments resulted in higher uric acid than CON. Se-Met produced higher aspartate aminotransferase, glucose, urea, low-density lipoprotein cholesterol, and lactate dehydrogenase than Se-Hlan. Regarding the Se status, the highest milk Se values appeared in 0.5 Se-Met, with intermediate values in 0.3 Se-Met and 0.5 Se-Hlan, whereas the highest and lowest serum Se levels were presented in 0.5 Se-Met and 0.3 Se-Hlan, respectively. Our results suggest that Se-Hlan was not as efficient in boosting serum or milk Se as Se-Met and differences in serum biomarkers between Se-Met and Se-Hlan may be associated with distinct metabolic pathways for different forms of organic Se.


Assuntos
Selênio , Feminino , Bovinos , Animais , Suplementos Nutricionais , Leite/metabolismo , Selenometionina/metabolismo , Ração Animal/análise , Biomarcadores/metabolismo , Dieta/veterinária
7.
Nano Lett ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38511842

RESUMO

Methane oxidation using molecular oxygen remains a grand challenge in which the obstacle is not only the activation of methane but also the reaction with oxygen, considering the mismatch of the ground spin states. Herein, we report TiO2-supported Pt nanocrystals (Pt/TiO2) with surface Pt-Ti alloyed layers that directly convert methane into oxygenates by using O2 as the oxidant with the assistance of CO. The oxygenate yield reached 749.8 mmol gPt-1 in a H2O aqueous solution over 0.1% Pt/TiO2 under 31 bar of mixed gas (20:5:6 CH4:CO:O2) at 150 °C for 3 h, while the CH3OH selectivity was 62.3%. On the basis of the control experiments and spectroscopic results, we identified the surface Pt-Ti alloy as the active sites. Moreover, CO promoted the dissociation of O2 on the surface of Pt-Ti alloyed layers and the subsequent activation of CH4 to form oxygenated products.

8.
Adv Mater ; : e2403073, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38553938

RESUMO

Na-ion batteries (NIBs) are sustainable alternatives to Li-ion technologies due to the abundant and widely-distributed resources. However, the most promising cathode materials of NIBs so far, O3 layered oxides, suffer from serious air instability issues, which significantly increases the manufactural cost and carbon footprint because of the long-term use of dry rooms. While some feasible strategies are proposed via case studies, universal design strategies for air-stable cathodes are yet to be established. Herein, the air degradation mechanisms of O3 cathodes are investigated via combined first-principles and experimental approaches, with bond dissociation energy proposed as an effective descriptor for predicting air stability. Experimental validations in various unary, binary, and ternary O3 cathodes confirm that the air stability can indeed be effectively improved via simple compositional design. Guided by the predictive model, the designed material can sustain 30-day air-storage without structural or electrochemical degradation. It is calculated that such air-stable cathodes can significantly reduce both energy consumption (≈4 100 000 kWh) and carbon footprint (≈2200-ton CO2) annually for a 2 GWh NIBs manufactory. Therefore, the fundamental understandings and universal design strategy presented open an avenue for rational materials design of NIBs toward both elemental and manufactural sustainability.

9.
Surg Laparosc Endosc Percutan Tech ; 34(2): 129-135, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38444073

RESUMO

OBJECTIVE: The purpose of this study is to evaluate the safety and efficacy of linaclotide and polyethylene glycol (PEG) electrolyte powder in patients with chronic constipation undergoing colonoscopy preparation. PATIENTS AND METHODS: We included 260 patients with chronic constipation who were scheduled to undergo a colonoscopy. They were equally divided into 4 groups using a random number table: 4L PEG, 3L PEG, 3L PEG+L, and 2L PEG+L. The 4 groups were compared based on their scores on the Boston Bowel Preparation Scale (BBPS) and Ottawa Bowel Preparation Quality Scale (OBPQS), adverse reactions during the bowel preparation procedure, colonoscope insertion time, colonoscope withdrawal time, detection rate of adenomas, and their willingness to repeat bowel preparation. RESULTS: In terms of the score of the right half of the colon, the score of the transverse colon, the total score using BBPS, and the total score using OBPQS, the 3L PEG (polyethylene glycol)+L group was superior to groups 3L PEG and 2L PEG+L ( P <0.05), but comparable to the 4L PEG group ( P >0.05). The incidence rate of vomiting was higher in the 4L PEG group than in the 2L PEG+L group ( P <0.05). There was no statistically significant difference in the insertion time of the colonoscope between the 4 groups. The colonoscope withdrawal time in the 3L PEG+L group was shorter than in groups 4L PEG and 3L PEG ( P <0.05) and comparable to that in the 4L PEG group ( P >0.05). There was no statistically significant difference in the rate of adenoma detection among the 4 groups ( P >0.05). The 4L PEG group was the least willing of the 4 groups to undergo repeated bowel preparation ( P <0.05). CONCLUSION: The 3L PEG+L is optimal among the 4 procedures. It can facilitate high-quality bowel preparation, reduce the incidence of nausea during the bowel preparation procedure, and encourage patients to undertake repeated bowel preparation.


Assuntos
Catárticos , Constipação Intestinal , Peptídeos , Humanos , Catárticos/efeitos adversos , Pós , Constipação Intestinal/diagnóstico , Constipação Intestinal/induzido quimicamente , Polietilenoglicóis , Colonoscopia/métodos , Eletrólitos
10.
Sci Bull (Beijing) ; 69(8): 1100-1108, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38423872

RESUMO

Catalytic conversion of nitrate (NO3-) pollutants into ammonia (NH3) offers a sustainable and promising route for both wastewater treatment and NH3 synthesis. Alkali cations are prevalent in nitrate solutions, but their roles beyond charge balance in catalytic NO3- conversion have been generally ignored. Herein, we report the promotion effect of K+ cations in KNO3 solution for NO3- reduction over a TiO2-supported Ni single-atom catalyst (Ni1/TiO2). For photocatalytic NO3- reduction reaction, Ni1/TiO2 exhibited a 1.9-fold NH3 yield rate with nearly 100% selectivity in KNO3 solution relative to that in NaNO3 solution. Mechanistic studies reveal that the K+ cations from KNO3 gradually bonded with the surface of Ni1/TiO2, in situ forming a K-O-Ni moiety during reaction, whereas the Na+ ions were unable to interact with the catalyst in NaNO3 solution. The charge accumulation on the Ni sites induced by the incorporation of K atom promoted the adsorption and activation of NO3-. Furthermore, the K-O-Ni moiety facilitated the multiple proton-electron coupling of NO3- into NH3 by stabilizing the intermediates.

12.
Sci Transl Med ; 16(734): eade7347, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38354227

RESUMO

Nonalcoholic fatty liver (NAFL) remains relatively benign, but high-risk to end-stage liver diseases become highly prevalent when it progresses into nonalcoholic steatohepatitis (NASH). Our current understanding of the development of NAFL to NASH remains insufficient. In this study, we revealed MAP kinase (MAPK) activation as the most notable molecular signature associated with NASH progression across multiple species. Furthermore, we identified suppressor of IKKε (SIKE) as a conserved and potent negative controller of MAPK activation. Hepatocyte-specific overexpression of Sike prevented NASH progression in diet- and toxin-induced mouse NASH models. Mechanistically, SIKE directly interacted with TGF-ß-activated kinase 1 (TAK1) and TAK1-binding protein 2 (TAB2) to interrupt their binding and subsequent TAK1-MAPK signaling activation. We found that indobufen markedly up-regulated SIKE expression and effectively improved NASH features in mice and macaques. These findings identify SIKE as a MAPK suppressor that prevents NASH progression and provide proof-of-concept evidence for targeting the SIKE-TAK1 axis as a potential NASH therapy.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transdução de Sinais/fisiologia , Hepatócitos/metabolismo , Perfilação da Expressão Gênica , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fígado/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
13.
Sci Total Environ ; 918: 170729, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38325445

RESUMO

Decades of overfishing have greatly altered the community structure in the East China Sea (ECS). The decrease of top predators in the food web has weakened the control exerted from higher trophic levels. As a result, the biomass of benthic crustaceans, representing the third trophic level, has increased. This has probably led to a restriction of the second trophic level, diminishing its ability to control primary producer biomass. Consequently, the ecological pyramid of trophic levels in the ECS has been altered, reducing the top-down control on the first trophic level. This has made algal blooms more susceptible to occur under nutrient loads, temperate temperatures, and light availability. The reduced abundance of the fourth trophic levels has caused a larger portion of primary productivity to sink directly to the benthic community, bypassing the food web. This influx of sinking organic matter has resulted in organic enrichment in the bottom waters, impacting the biomass and diversity of benthic organisms. Furthermore, it has intensified anthropogenic carbon storage in the sediment. Subsequently, intense decomposition processes occur, leading to the development of anoxia and even hypoxia. The seasonal hypoxia off the Changjiang Estuary can be attributed to the combined influence of top-down control and bottom-up control related to nutrient loading, and terrestrial inputs. In order to mitigate extreme hypoxia events, it is necessary to implement comprehensive fisheries policies that prioritize the maintenance of a healthy and functional ecosystem. This approach should go beyond relying solely on watershed management strategies to regulate riverine inputs. PLAIN LANGUAGE SUMMARY: Decades of overfishing changed the food web in the East China Sea and weaken the resistance of ecosystem to hypoxia. Commercial fishing on top predators decreases the fourth trophic level while relatively increases the third trophic represented by crab and shrimp, which enhances grazing on the zooplankton. The decrease of the second trophic level fails to control the biomass of phytoplankton, thus more primary productivities directly sink to the benthic community and cause organic enrichment. The elevated flux of organic matters to the bottom waters causes the thrive of the carbs and shrimps, as well as more remineralization processes and eventually low oxygen level. Unlike the bottom-up perspective of hypoxia mechanism off the Changjiang Estuary, which is from the nutrient load, phytoplankton bloom, quick sink, effective decomposition and eventually hypoxia, the top-down control focuses on the changes of ecosystem structure and thus derived hindered energy transfer, changed community structure, enhanced carbon sink, elevated remineralization and ultimately hypoxia. These two mechanisms combine with each other and control the seasonal hypoxia off the Changjiang Estuary and even other coastal regions around the world.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Pesqueiros , Cadeia Alimentar , Biomassa , Fitoplâncton/fisiologia , Hipóxia
14.
PNAS Nexus ; 3(2): pgae057, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38380056

RESUMO

Land-ocean interactions greatly impact the evolution of coastal life on earth. However, the ancient geological forces and genetic mechanisms that shaped evolutionary adaptations and allowed microorganisms to inhabit coastal brackish waters remain largely unexplored. In this study, we infer the evolutionary trajectory of the ubiquitous heterotrophic archaea Poseidoniales (Marine Group II archaea) presently occurring across global aquatic habitats. Our results show that their brackish subgroups had a single origination, dated to over 600 million years ago, through the inversion of the magnesium transport gene corA that conferred osmotic-stress tolerance. The subsequent loss and gain of corA were followed by genome-wide adjustment, characterized by a general two-step mode of selection in microbial speciation. The coastal family of Poseidoniales showed a rapid increase in the evolutionary rate during and in the aftermath of the Cryogenian Snowball Earth (∼700 million years ago), possibly in response to the enhanced phosphorus supply and the rise of algae. Our study highlights the close interplay between genetic changes and ecosystem evolution that boosted microbial diversification in the Neoproterozoic continental margins, where the Cambrian explosion of animals soon followed.

16.
EBioMedicine ; 100: 104964, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38181703

RESUMO

BACKGROUND: Quantitative nuclear magnetic resonance (NMR) metabolomics techniques provide detailed measurements of lipoprotein particle concentration. Metabolic dysfunction often represents a cluster of conditions, including dyslipidaemia, hypertension, and diabetes, that increase the risk of cardiovascular diseases (CVDs). However, the causal relationship between lipid profiles and blood pressure (BP) remains unclear. We performed a Mendelian Randomisation (MR) study to disentangle and prioritize the potential causal effects of major lipids, lipoprotein particles, and circulating metabolites on BP and pulse pressure (PP). METHODS: We employed single-nucleotide polymorphisms (SNPs) associated with major lipids, lipoprotein particles, and other metabolites from the UK Biobank as instrumental variables. Summary-level data for BP and PP were obtained from the Genetic Epidemiology Research on Adult Health and Aging (GERA) cohort. Two-sample MR and MR Bayesian model averaging approaches (MR-BMA) were conducted to analyse and rank causal associations. FINDINGS: Genetically predicted TG was the most likely causal exposure among the major lipids to increase systolic blood pressure (SBP) and diastolic blood pressure (DBP), with marginal inclusion probabilities (MIPs) of 0.993 and 0.847, respectively. Among the majority of lipoproteins and their containing lipids, including major lipids, genetically elevated TG in small high-density lipoproteins (S_HDL_TG) had the strongest association with the increase of SBP and DBP, with MIPs of 0.416 and 0.397, respectively. HDL cholesterol (HDL_C) and low-density lipoprotein cholesterol (LDL_C) were potential causal factors for PP elevation among the major lipids (MIP = 0.927 for HDL_C and MIP = 0.718 for LDL_C). Within the sub-lipoproteins, genetically predicted atherogenic lipoprotein particles (i.e., sub-very low-density lipoprotein (VLDL), intermediate-density lipoprotein (IDL), and LDL particles) had the most likely causal impact on increasing PP. INTERPRETATION: This study provides genetic evidence for the causality of lipids on BP indicators. However, the effect size on SBP, DBP, and PP varies depending on the lipids' components and sizes. Understanding this potential relationship may inform the potential benefits of comprehensive management of lipid profiles for BP control. FUNDING: Key Research and Development Program of Hubei Province, Science and Technology Innovation Project of Huanggang Central Hospital of Yangtze University, the Hubei Industrial Technology Research Institute of Heart-Brain Diseases, and the Hubei Provincial Engineering Research Centre of Comprehensive Care for Heart-Brain Diseases.


Assuntos
Encefalopatias , Lipoproteínas , Adulto , Humanos , Pressão Sanguínea/genética , Triglicerídeos , Teorema de Bayes , Lipoproteínas/genética , LDL-Colesterol , HDL-Colesterol , Análise da Randomização Mendeliana , Fatores de Risco
17.
Int J Biol Sci ; 20(1): 152-174, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38164186

RESUMO

The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) is a crucial innate defence mechanism against viral infection in the innate immune system, as it principally induces the production of type I interferons. Immune responses and metabolic control are inextricably linked, and chronic low-grade inflammation promotes the development of metabolic diseases. The cGAS-STING pathway activated by double-stranded DNA (dsDNA), cyclic dinucleotides (CDNs), endoplasmic reticulum stress (ER stress), mitochondrial stress, and energy imbalance in metabolic cells and immune cells triggers proinflammatory responses and metabolic disorders. Abnormal overactivation of the pathway is closely associated with metabolic diseases such as obesity, nonalcoholic fatty liver disease (NAFLD), insulin resistance and cardiovascular diseases (CVDs). The interaction of cGAS-STING with other pathways, such as the nuclear factor-kappa B (NF-κB), Jun N-terminal kinase (JNK), AMP-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), autophagy, pyroptosis and insulin signalling pathways, is considered an important mechanism by which cGAS-STING regulates inflammation and metabolism. This review focuses on the link between immune responses related to the cGAS-STING pathway and metabolic diseases and cGAS-STING interaction with other pathways for mediating signal input and affecting output. Moreover, potential inhibitors of the cGAS-STING pathway and therapeutic prospects against metabolic diseases are discussed. This review provides a comprehensive perspective on the involvement of STING in immune-related metabolic diseases.


Assuntos
Interferon Tipo I , Doenças Metabólicas , Humanos , Transdução de Sinais/fisiologia , Nucleotidiltransferases/metabolismo , Inflamação , Imunidade Inata
18.
Arterioscler Thromb Vasc Biol ; 44(3): e82-e98, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38205640

RESUMO

BACKGROUND: Integrins mediate the adhesion, crawling, and migration of neutrophils during vascular inflammation. Thiol exchange is important in the regulation of integrin functions. ERp72 (endoplasmic reticulum-resident protein 72) is a member of the thiol isomerase family responsible for the catalysis of disulfide rearrangement. However, the role of ERp72 in the regulation of Mac-1 (integrin αMß2) on neutrophils remains elusive. METHODS: Intravital microscopy of the cremaster microcirculation was performed to determine in vivo neutrophil movement. Static adhesion, flow chamber, and flow cytometry were used to evaluate in vitro integrin functions. Confocal fluorescent microscopy and coimmunoprecipitation were utilized to characterize the interactions between ERp72 and Mac-1 on neutrophil surface. Cell-impermeable probes and mass spectrometry were used to label reactive thiols and identify target disulfide bonds during redox exchange. Biomembrane force probe was performed to quantitatively measure the binding affinity of Mac-1. A murine model of acute lung injury induced by lipopolysaccharide was utilized to evaluate neutrophil-associated vasculopathy. RESULTS: ERp72-deficient neutrophils exhibited increased rolling but decreased adhesion/crawling on inflamed venules in vivo and defective static adhesion in vitro. The defect was due to defective activation of integrin Mac-1 but not LFA-1 (lymphocyte function-associated antigen-1) using blocking or epitope-specific antibodies. ERp72 interacted with Mac-1 in lipid rafts on neutrophil surface leading to the reduction of the C654-C711 disulfide bond in the αM subunit that is critical for Mac-1 activation. Recombinant ERp72, via its catalytic motifs, increased the binding affinity of Mac-1 with ICAM-1 (intercellular adhesion molecule-1) and rescued the defective adhesion of ERp72-deficient neutrophils both in vitro and in vivo. Deletion of ERp72 in the bone marrow inhibited neutrophil infiltration, ameliorated tissue damage, and increased survival during murine acute lung injury. CONCLUSIONS: Extracellular ERp72 regulates integrin Mac-1 activity by catalyzing disulfide rearrangement on the αM subunit and may be a novel target for the treatment of neutrophil-associated vasculopathy.


Assuntos
Lesão Pulmonar Aguda , Antígeno de Macrófago 1 , Animais , Camundongos , Lesão Pulmonar Aguda/genética , Lesão Pulmonar Aguda/metabolismo , Adesão Celular , Dissulfetos , Molécula 1 de Adesão Intercelular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/metabolismo , Infiltração de Neutrófilos , Neutrófilos/metabolismo , Compostos de Sulfidrila/metabolismo
19.
J Lipid Res ; 65(3): 100513, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38295985

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease without specific Food and Drug Administration-approved drugs. Recent advances suggest that chromatin remodeling and epigenetic alteration contribute to the development of NAFLD. The functions of the corresponding molecular modulator in NAFLD, however, are still elusive. KDM1A, commonly known as lysine-specific histone demethylase 1, has been reported to increase glucose uptake in hepatocellular carcinoma. In addition, a recent study suggests that inhibition of KDM1A reduces lipid accumulation in primary brown adipocytes. We here investigated the role of KDM1A, one of the most important histone demethylases, in NAFLD. In this study, we observed a significant upregulation of KDM1A in NAFLD mice, monkeys, and humans compared to the control group. Based on these results, we further found that the KDM1A can exacerbate lipid accumulation and inflammation in hepatocytes and mice. Mechanistically, KDM1A exerted its effects by elevating chromatin accessibility, subsequently promoting the development of NAFLD. Furthermore, the mutation of KDM1A blunted its capability to promote the development of NAFLD. In summary, our study discovered that KDM1A exacerbates hepatic steatosis and inflammation in NAFLD via increasing chromatin accessibility, further indicating the importance of harnessing chromatin remodeling and epigenetic alteration in combating NAFLD. KDM1A might be considered as a potential therapeutic target in this regard.


Assuntos
Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Cromatina/genética , Histona Desmetilases/genética , Inflamação/genética , Lipídeos
20.
Sci Total Environ ; 912: 168875, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38013095

RESUMO

With accelerating anthropogenic activities, the overloading of land-derived nutrients and the resultant eutrophication are threatening coastal aquatic habitats worldwide. In semi-enclosed coastal bays, eutrophication is always considered a local problem that can be mitigated by nutrient reduction at a regional scale. However, as the main nutrient drains major global river discharges can have far-reaching effects over hundreds of kilometers alongshore, which are usually not precisely recognized in local coastal zone management. Here, we first quantified the contributions from both local and remote nutrient sources in Xiangshan Bay (XSB), a eutrophic semi-enclosed bay in China 200 km south of the mouth of the Changjiang River (CJR, the world's third largest river), employing a salinity-based conservative mixing model. We found that the nutrients in Xiangshan Bay were mainly supplied by intruded coastal water fed by CJR discharge, contributing 63 % of dissolved inorganic nitrogen (DIN), 65 % of dissolved silicon (DSi), and 49 % of dissolved inorganic phosphorus (DIP) during the summer of 2017, and 75 % of DIN, 75 % of DSi and 60 % of DIP during the winter of 2019. Additionally, long-term interannual trends in the nutrient concentrations of XSB were generally synchronous with those of the downstream portion of the CJR, indicating that CJR discharge seems to be a strong driver of the eutrophication observed in XSB. In contrast, the impact of local nutrient inputs, such as riverine sewage drainage, aquaculture, biogenic activities, and elemental recycling, was much lower and was regionally limited to the inner bay. Interestingly, the DIP contributions of the local and remote sources were similar, indicating the greater relevance of the internal process. Overall, to mitigate eutrophication in large river-adjacent coastal bays, the inter-regional united practices for nutrient source regulation and ecosystem restoration should be permanently applied along the entire river basin-estuary-coastal continuum.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...